Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(4): 993-1001, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078318

RESUMO

Nitrogen (N) and silicon (Si) are important nutritional elements for rice. However, excessive N fertili-zer application and the ignorance of Si fertilizer are common in practice. Straw biochar is rich in Si, which can be used as a potential Si fertilizer. In this study, we conducted a consecutive 3-year field experiment to explore the effects of N fertilizer reduction combined with straw biochar application on rice yield, Si and N nutrition. There were five treatments: conventional N application (180 kg·hm-2, N100), 20% N reduction (N80), 20% N reduction with 15 t·hm-2 biochar (N80+BC), 40% N reduction (N60), and 40% N reduction with 15 t·hm-2 biochar (N60+BC). The results showed that compared with N100, 20% N reduction did not affect the accumulation of Si and N in rice; 40% N reduction reduced foliar N absorption, but significantly increased foliar Si concentration by 14.0%-18.8%; while combined application of biochar significantly increased foliar Si accumulation, with an increase of Si concentration by 38.0%-63.3% and Si absorption by 32.3%-49.9%, but further reduced foliar N concentration. There was a significant negative correlation between Si and N concentration in mature rice leaves, but no correlation between Si and N absorption. Compared with N100, N reduction or combined application of biochar did not affect soil ammonium N and nitrate N, but increased soil pH. Nitrogen reduction combined application of biochar significantly increased soil organic matter by 28.8%-41.9% and available Si content by 21.1%-26.9%, with a significant positive correlation between them. Compared with N100, 40% N reduction reduced rice yield and grain setting rate, while 20% N reduction and combined application of biochar did not influence rice yield and yield components. In summary, appropriate N reduction and combined with straw biochar can not only reduce N fertilizer input, but also improve soil fertility and Si supply, which is a promising fertilization method in double-cropping rice fields.


Assuntos
Fertilizantes , Oryza , Fertilizantes/análise , Silício , Solo/química , Carvão Vegetal , Nitrogênio/análise , Agricultura
2.
Ying Yong Sheng Tai Xue Bao ; 33(7): 1911-1918, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-36052795

RESUMO

Biochar is beneficial to soil phosphorus (P) availability and crop growth, but the effects vary greatly across different soil types. We investigated the effects of rice straw biochar (4% of total mass) and P application (0, 30, and 90 kg P·hm-2) on soil P availability, phosphomonoesterase activity, and soybean P uptake by using lateritic red soil (pH 4.91) and cinnamon soil (pH 7.24) as test materials. The results showed that biochar application at different P levels significantly increased available P and total P in both soils. Biochar application with 30 kg P·hm-2 increased soil available P with maxima at 192.6% and 237.1% in lateritic red soil and cinnamon soil, respectively. Biochar application with 30 kg P·hm-2 in lateritic red soil significantly increased the activity of alkaline phosphomonoesterase by 78.9%, decreased the content of active organic P by 39.3%, and subsequently stimulated soybean P absorption and growth. Biochar amendment significantly reduced active organic P content in cinnamon soil, but did not affect soil phosphomonoesterase activity and plant growth. The content of active organic P was significantly negatively correlated with soil available P content. In summary, the effect of biochar on soil P availability varied across different soil types (lateritic red soil > cinnamon soil) and P levels (better at 30 kg P·hm-2). Our results could provide scientific basis for a promising application of biochar in reducing the amount of P fertilizer and increasing soybean P uptake, especially in lateritic red soil.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal/química , Monoéster Fosfórico Hidrolases , Fósforo/química , Solo/química , Poluentes do Solo/análise , Glycine max
3.
Ying Yong Sheng Tai Xue Bao ; 32(3): 1096-1104, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33754577

RESUMO

Silicon (Si) application could significantly alleviate the toxic effects of cadmium (Cd) on the growth and development of rice. Here, we examined the regulatory effects of Si on Cd accumulation and stress response in rice seedlings through a hydroponic root separation test. The results showed that the biomass of rice seedlings decreased significantly under Cd stress, while the addition of Si could alleviate such negative effect. The uptake, transfer, and accumulation of Cd in rice seedling were significantly affected by Si addition under Cd stress. Si application under the unilateral Cd stress (Si-Cd+Si, Si-Cd) increased Cd-retention coefficient of root by 83.3%-83.6%, which restricted the transfer of Cd from root to aboveground. However, the treatment with Si added to the non-stressed side (Si-Cd) elevated the uptake and accumulation of Cd in rice seedling, with the accumulation in root being increased by 48.2% when compared to the treatment under the unilateral Cd stress without the addition of Si (CK-Cd). The treatment with Si added in two sides (Si-Cd+Si) decreased the uptake of Cd both in root and aboveground parts by 36.7% and 54.9%, respectively. The addition of Si under bilateral Cd stress (Cd-Cd+Si) significantly reduced the Cd uptake of both the root and aboveground parts by 57.8% and 46.5%, respectively, compared to the treatment of bilateral Cd stress (Cd-Cd). Higher Si concentration in rice seedling was found under the Cd stress. More Si was accumulated in rice seedling to resist the Cd stress when Si was added. The addition of Si affected the absorption of other metal elements in rice seedlings, including calcium (Ca), magnesium (Mg) and manganese (Mn). The concentrations of Ca and Mg in root and aboveground parts were significantly increased by Si addition under bilateral Cd-stress (Cd-Cd+Si), but Mn concentration was changed with the stress degree of Cd. The activities of superoxide dismutase (SOD) and peroxidase (POD) in root were affected by Si under Cd stress, especially for the Si-Cd treatment. The activity of POD in the root of the Cd-stress side and that of SOD in non-stress side were significantly increased, which benefit to scavenging the free radicals induced by Cd stress. In conclusion, Si could regulate the growth of rice seedlings, the uptake of elements such as Cd and Si, and the antioxidant reaction of the root system under the Cd stress. High Si concentration in plant is conducive to enhancing Cd tolerance.


Assuntos
Oryza , Poluentes do Solo , Cádmio/toxicidade , Estresse Oxidativo , Raízes de Plantas , Plântula , Silício/farmacologia , Poluentes do Solo/toxicidade
4.
Ying Yong Sheng Tai Xue Bao ; 31(7): 2381-2389, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32715704

RESUMO

We explored the impacts of nitrogen (N) reduction and biochar application on soil fertility and nutrient uptake of rice in early and late seasons of 2018 with a field experiment. There were six treatments, including control (no N application, CK), conventional N application (N100), 20% N reduction (N80), 20% N reduction plus biochar application (N80+BC), 40% N reduction (N60), 40% N reduction plus biochar application (N60+BC). Our results showed that 20% and 40% N reduction and/or with biochar application did not affect soil pH, organic matter, total N, total phosphorous (P), total potassium (K), ammonium N, available P and K in comparison with N100 treatment. N80+BC and N60+BC substantially increased soil cation exchange capacity (CEC) at tillering stage and electrical conductivity (EC) at heading stage in late season, respectively. Compared with the treatment with single N reduction, N80+BC significantly increased soil available K in early and late seasons and soil pH and total N in late season, while N60+BC increased soil total K at mature stage in early season. Soil nitrate content was decreased along with the growth stages for all treatments in early season. Compared with tillering stage, soil nitrate N content in conventional N application at heading stage and mature stage was decreased by 50.0% and 71.6%, respectively. Soil nitrate content in biochar treatment only was decreased by 6.3%-45.5%. N application along with biochar application had no significant effects on plant N uptake and utilization in early season. However, N reduction with biochar application significantly increased plant N uptake and N utilization rate by 34.8%-52.4% in late season, compared to conventional N application and single N reduction. Our findings suggest that adequate N reduction along with biochar application could maintain soil health and improve plant N uptake and utilization efficiency.


Assuntos
Fertilizantes/análise , Oryza , Carvão Vegetal , Nitrogênio , Nutrientes , Solo
5.
Bioresour Technol ; 272: 114-122, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30316193

RESUMO

Qualitative and quantitative characterization of Cd2+ adsorption mechanisms was performed with rice-straw and sewage-sludge biochars produced at different temperature (300-700 °C), respectively. The pH effect, adsorption kinetics and isotherms were investigated, and chemical analyses of Cd2+-loaded biochars were conducted by SEM-EDS, XRD, FTIR and Boehm titration. This demonstrated that rice-straw biochars (RSBs) have greater adsorption capacities for Cd2+ than sewage-sludge biochars (SSBs), which was mainly due to precipitation and cation exchange mechanisms, with their contribution proportion to total adsorption from 76.1% to 80.8%. While in SSBs, both mechanisms were overshadowed by coordination with π electrons mechanism accounting for 59.2%-62.9% of total adsorption, even the role of cation exchange was negligible in the adsorption mechanisms accounting for 2.3%-6.7%. The relationship of each mechanism with biochar's properties were discussed, which further deepen our understanding of adsorption on biochars. These results suggest RSBs have great potential for removing Cd2+ from aqueous solutions.


Assuntos
Cádmio/química , Carvão Vegetal/química , Oryza/química , Esgotos , Adsorção , Cinética
6.
Artigo em Inglês | MEDLINE | ID: mdl-30297625

RESUMO

Silicon (Si) plays important roles in alleviating heavy metal stress in rice plants. Here we investigated the physiological response of rice at different growth stages under the silicon-induced mitigation of cadmium (Cd) and zinc (Zn) toxicity. Si treatment increased the dry weight of shoots and roots and reduced the Cd and Zn concentrations in roots, stems, leaves and grains. Under the stress of exposure to Cd and Zn, photosynthetic parameters including the chlorophyll content and chlorophyll fluorescence decreased, while the membrane permeability and malondialdehyde (MDA) increased. Catalase (CAT) and peroxidase (POD) activities increased under heavy metals stress, but superoxide dismutase (SOD) activities decreased. The magnitude of these Cd- and Zn-induced changes was mitigated by Si-addition at different growth stages. The available Cd concentration increased in the soil but significantly decreased in the shoots, which suggested that Si treatment prevents Cd accumulation through internal mechanisms by limiting Cd2+ uptake by the roots. Overall, the phenomena of Si-mediated alleviation of Cd and excess Zn toxicity in two rice cultivars could be due to the limitation of metal uptake and transport, resulting in an improvement in cell membrane integrity, photosynthetic performance and anti-oxidative enzyme activities after Si treatment.


Assuntos
Metais Pesados/metabolismo , Metais Pesados/toxicidade , Oryza/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Catalase/metabolismo , Clorofila/metabolismo , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Zinco/metabolismo , Zinco/toxicidade
7.
Environ Sci Pollut Res Int ; 25(28): 28322-28334, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30083897

RESUMO

This study investigated the efficiency and mechanisms of Cd2+ removal by chicken-manure biochar produced at different temperatures. Adsorption kinetics, isotherms, thermodynamic, and desorption were examined, and the biochars before and after adsorption were analyzed by SEM-EDS, FTIR, Boehm titration, and XRD. Kinetics of adsorption were better described by pseudo-second-order kinetic model than pseudo-first-order kinetic and intraparticle diffusion model under different initial Cd2+ concentrations of 20, 50, and 100 mg L-1. Equilibrium adsorption was better modeled by Freundlich and Temkin isotherm equations than Langmuir equation at different temperatures of 25, 35, and 45 °C. Thermodynamic parameters confirmed the spontaneous and endothermic nature of the adsorption of Cd2+ at all of temperatures. Moreover, functional group complexation, precipitation, and cation exchange jointly contributed to Cd2+ adsorption on the biochars, whose relationship with the properties of biochar were also analyzed. The new precipitate as Cd5(PO4)3OH was found during the adsorption. Complexation and precipitation were predominant mechanisms for all biochars (together accounting for 92.4-98.8%), while cation exchange made a relatively minor contribution to total Cd2+ removal (accounting for 1.2-7.6%). The relative distribution of each mechanism on the biochars was determined, which deepen our understanding of the Cd2+ adsorption process. These results are useful for future practical applications of biochar to removal heavy metals from water.


Assuntos
Cádmio/análise , Carvão Vegetal/química , Esterco/análise , Poluentes Químicos da Água/análise , Adsorção , Animais , Galinhas , Cinética , Temperatura , Termodinâmica
8.
Ecotoxicol Environ Saf ; 157: 216-226, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625395

RESUMO

In an effort to explore the detoxifying mechanisms of B. cereus RC-1 under heavy metal stress, the bioaccumulation by growing cells under varying range of pH, culture time and initial metal concentration were investigated from a perspective of cation release. The maximum removal efficiencies were 16.7%, 38.3%, 81.4% and 40.3% for Cu2+, Zn2+, Cd2+ and Pb2+, respectively, with initial concentrations of 10 mg/L at pH 7.0. In presence of Cu2+ or Zn2+, large quantities of cations were released into the medium in descending order of Na+>K+>Ca2+>Mg2+, while bioremoval of the two essential metals Cd2+ and Pb2+ was accompanied with cellular Na+ and Mg2+ uptake from the medium, respectively. The relative mean contributions of intracellular accumulation to the total removal were approximately 19.6% for Cu2+, 12.8% for Zn2+, 51.1% for Cd2+, and only 4.6% for Pb2+. Following exposure at high concentration, B. cereus RC-1 could keep intracellular Cd2+ concentrations constant, possibly by means of a Cd-efflux system whose activity coincided with uptake of Na+, and reduce intracellular Pb2+ concentration due to the effect of Mg2+ on limiting Pb2+ access to the cells. Cellular morphology, surface functional groups and intracellular trace elements were further investigated by SEM-EDX, TEM-EDX, FTIR and ICP-MS analysis. The phenomena that removal of Cd2+ and Pb2+ coincided with uptake of Na+ and Mg2+, respectively, inspires a novel research perspective towards the study of protective mechanism of bacterial cells against the toxicity of heavy metals.


Assuntos
Bacillus cereus/metabolismo , Metais Pesados/metabolismo , Bacillus cereus/crescimento & desenvolvimento , Cátions , Concentração de Íons de Hidrogênio
9.
Ying Yong Sheng Tai Xue Bao ; 28(2): 474-484, 2017 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29749155

RESUMO

Intercropping is a sound eco-agriculture model, but aquatic crops (e.g., rice) intercropping is seldom researched. In the present study, rice and water spinach were chosen as the research objects, a field trial was conducted to explore the yields, interspecific relationship and Si, N nutrition of rice under rice-water spinach intercropping for four seasons during two consecutive years (2014-2015). The experiment had five treatments: rice monoculture, water spinach monoculture, and rice-water spinach intercropping ratios of 2:2, 3:2, 4:2, respectively. The results showed that rice-water spinach intercropping significantly increased rice yield, and the increase rates of 2:2, 3:2 and 4:2 intercropping per unit area were 77.5%-120.6%, 64.9%-80.9%, 37.7%-56.0%, respectively. However, intercropping resulted in reduction of water spinach yield. Intercropping significantly increased total yield of rice and water spinach from land equivalent ratios (LER) analysis. The values of LER were more than 1.0, and the ratio of 3:2 intercropping had the best effect. As for the competitive index, rice was more competitive than water spinach in intercropping system, especially in early season. Compared with rice monoculture, rice-water spinach intercropping significantly increased the absorption of Si and N in rice leaves, and Si content of rice leaves during ripening stage, but didn't increase its N content and even slightly reduced it during ripening stage. Intercropping had no significant effect on available Si, ammonium N and nitrate N content in soil. Compared with rice monoculture and intercropping, water spinach monoculture had always the highest available Si, ammonium N and nitrate N contents in soil through the experiment period. The results suggested that rice-spinach intercropping could promote rice to absorb silicon and nitrogen and increase the competitive ability of rice.


Assuntos
Ipomoea , Nitrogênio , Oryza , Agricultura , Produtos Agrícolas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...